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Code: https://github.com/ShawnXiaoyuWang/Cached-DFL
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Background & Motivation
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Agents/ Clients

= Train model locally

Central Server

= Aggregate local models
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Model Sharing without Server I
I v’ Device-to-device (D2D) is more efficient. I
[

1| v More resilient to single-point-failure.

| X Throttled by sparse D2D communication. |
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Decentralized Federated Learning
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| Star Topo. with Server

I v’ Privacy-preserving

X Single-point-of-failure

[
[
I v' Harness computing power I
X Performance bottleneck :

I X Long-range communication
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Cached-DFL

(d Our Proposal: Cached-DFL

J DFL

J Data coverage vs. staleness
J Freshness-first Caching:

L Other Considerations:

] Values of Caching Agent B’s Model

= Motivated by Delay-tolerant Networking (DTN) for robust and
efficient data dissemination in Mobile Ad-hoc Network (MANET);

= Knowledge Cache: stores own model + models from other agents;

= Two agents meet -> exchange/fuse local and cached models;

= Knowledge Caching-Relay: leverages mobility to accelerate model
spreading/fusion globally.

] Costs of Model Caching

X Communication cost

X Storage cost
X Cache Replacement

on Agent A
v Knowledge from B’s unique data;
v Contribute to model fusion on A;
v Relayed to other agents via A;
v’ Fast and even model spreading for
global convergence.

to-date:
X Diverge global convergence

X Cached models are not update-
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Caching Algorithm Design

Algorithm 2: LRU Model Cache Update (LRU Update)

Input: Current cache C;(¢), agent j’s cache C;(t), model
x;(t) from agent 7, current time ¢, cache size Cn,x, staleness
tolerance Tyax

Main Process:
1: for each z(7) € C;(t) or C;(t) do

2: ift — 7 > 7.« then

3 Remove z(7) from C;(t) or C;(t)
z end if

5: end for
6
7
8

* threshold t,,,,, -> control
staleness, cached models can
not be older than t,,,,

= when cache is full-> LRU

.. ) , : Add or replace xz;(t) into C; (¢
» data distribution/uniqueness . for each 1.(7) Ejéj)(t) do ()
LRU Steps ...

» |oad balance 93 e
en or

" projected future mobility, etc. 10: Sort models in C;(t) in descending order of 7

11: Retain only the first C,x models in C; ()
12: return C;(t + 1)

Output: C;(t + 1)

Convergence Analysis

We also gives the convergence analysis, build a relationship
related to t,;,4, : smaller t,,,, leads to tighter bound
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Check out more details in our extended version.

Evaluation
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Fig.3 Grouped-based Caching

Conclusion

o Cached-DFL outperforms DFL w.o. caching, especially for

non-i.i.d. data distributions on agents;

o Larger cache size and smaller model staleness Tmax

make caching closer to the performance of CFL;

o The choice of Tmax should consider the diversity data

distributions on agents;

o The mobility or topology will also have big impact on

Generated Manhattan Map from INRIX.
100 Cars by Manhattan Mobility Model
Communication range: 100 meters
Velocity: 13.89 m/s

o NN Models: CNN
0 Image Classification Datasets

MNIST, FashionMNIST, CIFAR-10

o Dataset Distributions:
i.i.d, Dirichlet, Non-i.i.d.
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model convergence.

Extended Version: Wang, X., Xiong, G., Cao, H., Li, J. and Liu, Y., 2024.
“Decentralized Federated Learning with Model Caching on Mobile Agents”,
arXiv preprint arXiv:2408.14001.
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